Wellposedness and analytic smoothing effect for the Benjamin-Ono equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation theory for the Benjamin–Ono equation

We develop a perturbation theory for the Benjamin–Ono (BO) equation. This perturbation theory is based on the inverse scattering transform for the BO equation, which was originally developed by Fokas and Ablowitz and recently refined by Kaup and Matsuno. We find the expressions for the variations of the scattering data with respect to the potential, as well as the dual expression for the variat...

متن کامل

Sharp ill-posedness result for the periodic Benjamin-Ono equation

We prove the discontinuity for the weak L(T)-topology of the flowmap associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in Hs(T) as soon as s < 0 and thus completes exactly the well-posedness result obtained in [12]. AMS Subject Classification : 35B20, 35Q53.

متن کامل

Asymptotic stability of solitons for the Benjamin-Ono equation

In this paper, we prove the asymptotic stability of the family of solitons of the Benjamin-Ono equation in the energy space. The proof is based on a Liouville property for solutions close to the solitons for this equation, in the spirit of [16], [18]. As a corollary of the proofs, we obtain the asymptotic stability of exact multi-solitons.

متن کامل

Complex-valued Solutions of the Benjamin–ono Equation

We prove that the Benjamin–Ono initial-value problem is locally well-posed for small data in the Banach spaces H̃σ(R), σ ≥ 0, of complex-valued Sobolev functions with special low-frequency structure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 2002

ISSN: 0034-5318

DOI: 10.2977/prims/1145476271